Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals.
نویسندگان
چکیده
PURPOSE Iterative reconstruction algorithms are becoming more commonly employed in positron emission tomography (PET) imaging; however, the quantitative accuracy of the reconstructed images still requires validation for various levels of contrast and counting statistics. METHODS The authors present an evaluation of the quantitative accuracy of the 3D maximum a posteriori (3D-MAP) image reconstruction algorithm for dynamic PET imaging with comparisons to two of the most widely used reconstruction algorithms: the 2D filtered-backprojection (2D-FBP) and 2D-ordered subsets expectation maximization (2D-OSEM) on the Siemens microPET scanners. The study was performed for various levels of count density encountered in typical dynamic scanning as well as the imaging of cardiac activity concentration in small animal studies on the Focus 120. Specially designed phantoms were used for evaluation of the spatial resolution, image quality, and quantitative accuracy. A normal mouse was employed to evaluate the accuracy of the blood time activity concentration extracted from left ventricle regions of interest (ROIs) within the images as compared to the actual blood activity concentration measured from arterial blood sampling. RESULTS For MAP reconstructions, the spatial resolution and contrast have been found to reach a stable value after 20 iterations independent of the β values (i.e., hyper parameter which controls the weight of the penalty term) and count density within the frame. The spatial resolution obtained with 3D-MAP reaches values of ∼1.0 mm with a β of 0.01 while the 2D-FBP has value of 1.8 mm and 2D-OSEM has a value of 1.6 mm. It has been observed that the lower the hyper parameter β used in MAP, more iterations are needed to reach the stable noise level (i.e., image roughness). The spatial resolution is improved by using a lower β value at the expense of higher image noise. However, with similar noise level the spatial resolution achieved by 3D-MAP was observed to be better than that by 2D-FBP or 2D-OSEM. Using an image quality phantom containing hot spheres, the estimated activity concentration in the largest sphere has the expected concentration relative to the background area for all the MAP images. The obtained recovery coefficients have been also shown to be almost independent of the count density. 2D-FBP and 2D-OSEM do not perform as well, yielding recovery coefficients lower than those observed with 3D-MAP (approximately 33% lower for the smallest sphere). However, a small positive bias was observed in MAP reconstructed images for frames of very low count density. This bias is present in the uniform area for count density of less than 0.05 × 10(6) counts/ml. For the dynamic mouse study, it was observed that 3D-MAP (even gated at diastole) cannot predict accurately the blood activity concentration due to residual spill-over activity from the myocardium into the left ventricle (approximately 15%). However, 3D-MAP predicts blood activity concentration closer to blood sampling than 2D-FBP. CONCLUSIONS The authors observed that 3D-MAP produces more accurate activity concentration estimates than 2D-FBP or 2D-OSEM at all practical levels of statistics and contrasts due to improved spatial resolution leading to lesser partial volume effect.
منابع مشابه
Impact of Various Image Reconstruction Methods on Joint Compensation of Respiratory Motion and Partial Volume Effects in Whole-Body 18F-FDG PET/CT Imaging: Patients with Non-Small Cell Lung Cancer
Background: The present study aims to assess the impact of various image reconstruction methods in 18F-FDG PET/CT imaging on the quantification performance of the proposed technique for joint compensation of respiratory motion and partial volume effects (PVEs) in patients with non-small cell lung cancer. Materials and Methods: An image-based deconvolution technique was proposed, incorporating w...
متن کامل3.5D dynamic PET image reconstruction incorporating kinetics-based clusters.
Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames wit...
متن کاملThe influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation
Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...
متن کامل4D PET: Beyond conventional dynamic PET imaging
In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET imaging. We will discuss existing limitations in conventional dynamic PET imaging which involves independent reconstruction of dynamic PET datasets. Various approaches that seek to attempt some or all of these limitations are reviewed in this work, including techniques that util...
متن کاملPET vs. SPECT: in the context of ongoing developments
This paper intends to compare the abilities of the two major imaging modalities in nuclear medicine imaging: Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT). The motivations are many-fold: (i) To gain a better understanding of the strengths and limitations of the two imaging modalities in the context of recent and ongoing developments in hardware ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2012